Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala
نویسندگان
چکیده
Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3) eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR) images (interferograms) processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1) and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1) subsidence of the area involved in the co-eruptive slope movement; (2) localized deformation near the summit; and (3) emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.
منابع مشابه
Dramatic volcanic instability revealed by InSAR
Interferometric synthetic aperture radar (InSAR) was used to measure ground deformation during explosive eruptions on 27 and 28 May 2010 at Pacaya volcano, Guatemala. Interferograms produced using spaceborne and airborne synthetic aperture radar data reveal ~3 m of along-slope movement of the southwest sector of the edifice during these eruptions. This is the largest measured slope instability ...
متن کاملStudies of Volcanoes of Alaska by Satellite Radar Interferometry
Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes....
متن کاملPre - eruption deformation caused by dike intrusion beneath Kizimen volcano , Kamchatka , Russia , observed by InSAR
a r t i c l e i n f o Interferometric synthetic aperture radar (InSAR) images reveal a pre-eruption deformation signal at Kizimen volcano, Kamchatka, Russia, where an ongoing eruption began in mid-November, 2010. The previous eruption of this basaltic andesite-to-dacite stratovolcano occurred in 1927–1928. InSAR images from both ascending and descending orbital passes of Envisat and ALOS PALSAR...
متن کاملMonitoring Landslides and Volcanic Deformation from Insar Techniques
Our research has shown that interferometric SAR techniques can be used to monitor deformation at landslides and volcanoes under specific conditions. Special filtered interferograms are being used to reduce speckle and minimize errors created by vegetation. InSAR images were used to monitor current post slide motion along existing fault lines at the Frank Slide a 30 x 10 m rock avalanche, in the...
متن کاملOn the absence of InSAR-detected volcano deformation spanning the 1995–1996 and 1999 eruptions of Shishaldin Volcano, Alaska
Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016